八年级数学教案全集(优秀15篇)
教案的编写有助于增强学生的专注度,激发他们的学习热情,从而提升教学效果。怎样写八年级数学教案全集?这里提供八年级数学教案全集分享,供大家参考。
八年级数学教案全集篇1
一、教学目标
知识与技能目标:能够说出多边形的内角和公式并会运用
过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。
情感态度与价值观目标:养成实事求是的科学态度。
二、教学重难点
教学重点:多边形的内角和公式
教学难点:多边形内角和公式
三、教学方法
讲解法、练习法、分小组讨论法
四、教学过程
结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、
生成新知、深化新知、巩固新知、小结作业。
1.导入新知
首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的
内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。
通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。
2.生成新知
接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此
得出四边形的内角和是2个三角形的内角和,即2__180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3__180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180__(n-2)。
验证:七边形验证
在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。
3.深化新知
再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求
内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。
本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。
4.巩固提高
我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,
我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。
我会在PPT上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。
5.小结作业
先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。
八年级数学教案全集篇2
教材分析
1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标
1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
八年级数学教案全集篇3
教学任务分析
教学目标
知识技能
探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.
数学思考
能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.
解决问题
通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.
情感态度
在应用等腰梯形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.
重点
等腰梯形的性质及其应用.
难点
解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.
教学流程安排
活动流程图
活动的内容和目的
活动1想一想
活动2说一说
活动3画一画
活动4做—做
活动5练一练
活动6理一理
观察梯形图片,引入本节课的学习内容.
了解梯形定义、各部分名称及分类.
通过画图活动,初步发现梯形与三角形的转化关系.
探究得到等腰梯形的性质.
通过解决具体问题,寻找解决梯形问题的方法.
通过整理回顾,巩固知识、提高能力、渗透思想.
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
观察下图中,有你熟悉的图形吗?它们有什么共同的特点?
演示图片,学生欣赏.
结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.
由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.
[活动2]
梯形定义一组对边平行而另一组对边不平行的四边形叫做梯形.
学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.
通过类比,培养学生归纳、总结的能力.
问题与情景
师生行为
设计意图
一些基本概念
(1)(如图):底、腰、高.
(2)等腰梯形:两腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一个角是直角的梯形叫做直角梯形.
学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后,教师可以强调:①梯形与四边形的关系;
②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.
熟悉图形,明确概念,为探究图形性质做准备.
[活动3]
画一画
在下列所给图中的每个三角形中画一条线段,
(1)怎样画才能得到一个梯形?
(2)在哪些三角形中,能够得到一个等腰梯形?
在学生独立探究的基础上,学生分组交流.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.
本次活动教师应重点关注:
(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.
(2)学生能否将等腰三角形转化为等腰梯形.
(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.
等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.
问题与情景
师生行为
设计意图
[活动4]
做—做
探索等腰梯形的性质(引入用轴对称解决问题的思想).
在一张方格纸上作一个等腰梯形,连接两条对角线.
(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的&39;线段和相等的角?学生画图并通过观察猜想;
(2)这个等腰梯形的两条对角线的长度有什么关系?
学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.
针对不同认识水平的学生,教师指导学生活动.
师生共同归纳:
①等腰梯形是轴对称图形,上下底的中点连线是对称轴.
②等腰梯形两腰相等.
③等腰梯形同一底上的两个角相等.
④等腰梯形的两条对角线相等.
教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.
[活动5]
练—练
例1(教材P118的例1)略.
例2如图,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的长.
师生共同分析,寻找解决问题的方法和策略.
例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.
分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.
其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.
问题与情景
师生行为
设计意图
例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求证:BE=CD.
分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
证明(略)
例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.
[活动6]
1.小结
2.布置作业
(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.
(2)已知:如图,
梯形ABCD中,CD//AB,,.
求证:AD=AB—DC.
(3)已知,如图,
梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)
师生归纳总结:
解决梯形问题常用的方法:
(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);
(2)“作高”:使两腰在两个直角三角形中(图2);
(3)“延腰”:构造具有公共角的两个等腰三角形(图3);
(4)“平移对角线”:使两条对角线在同一个三角形中(图4);
(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).
尽量多地让学生参与发言是一个交流的过程.
梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.
学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.
八年级数学教案全集篇4
《因式分解》教案
教学目标:
1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5:a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的&39;条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
八年级数学教案全集篇5
教学目的
1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点
等腰三角形的性质及其应用。
教学难点
简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称等边对等角。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称三线合一。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此三线合一。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到B=C,又由B+C=180,从而推出B=C=60。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由三线合一可知AD是△ABC的顶角平分线,底边上的高,从而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打,错的打。
a.等腰三角形的角平分线,中线和高互相重合()
b.有一个角是60的等腰三角形,其它两个内角也为60()
2.如图(2),在△ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。三线合一性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业
1.课本P127─7,9
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,
EOD的度数。
(一)课本P127─1、3、4、8题.
八年级数学教案全集篇6
教材分析
本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。
学情分析
本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。
从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。
教学目标
1、知识与技能:
掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。
2、过程与方法:
(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;
(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。
3、情感态度与价值观:
(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;
(2)通过性质的推导体会“特殊。
八年级数学教案全集篇7
一、教材分析教材的地位和作用:
本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的.三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。
二、学情分析
八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。
三、教学目标及重点、难点的确定
根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:
(一)教学目标:
1、知识技能
(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.
(2)理解并掌握轴对称的概念,对称轴;了解对称点.
(3)了解轴对称图形和轴对称的联系与区别.
2、过程与方法目标
经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.
3、情感、态度与价值观
通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。
(二)教学重点:轴对称图形和轴对称的有关概念.
(三)教学难点:轴对称图形与轴对称的联系、区别
.四、教法和学法设计
本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:
【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。
【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率
五、说程序设计:
新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。
(一)、观图激趣、设疑导入。
出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。
[设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,
(二)、实践探索、感悟特征.
《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。
为了进一步认识轴对称图形的特点又出示了一组练习
(练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴
[设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。
(练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。
(三)、动手操作、再度探索新知。
将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。
再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。
(四)、巩固练习、升华新知。
出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,
在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。
(课件演示)轴对称图形及两个图形成轴对称区别与联系
(五)、综合练习、发展思维。
1、抢答;观察周围哪些事物的形状是轴对称图形。
2、判断:
生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。
(1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?
0123456789ABCDEFGH
3、像这样写法的汉字哪些是轴对称图形?
口工用中由日直水清甲
(这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)
(六)归纳小结、布置作业
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!
六、设计说明
这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。
八年级数学教案全集篇8
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件.
2.提高对矩形的性质和判别在实际生活中的应用能力.
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.
教学重点:
矩形的性质和常用判别方法的理解和掌握.
教学难点:
矩形的性质和常用判别方法的综合应用.
教学方法:
分析启发法
教具准备:
像框,平行四边形框架教具,多媒体课件.
教学过程设计:
一.情境导入:
演示平行四边形活动框架,引入课题.
二.讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)
结论:有一个内角是直角的平行四边形是矩形.
八年级数学上册教案2.探究矩形的性质:
(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角.
(2).探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.
①.随着∠α的变化,两条对角线的长度分别是怎样变化的?
②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳.)
结论:矩形的两条对角线相等.
(3).议一议:(展示问题,引导学生讨论解决.)
①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.
例解:(性质的运用,渗透矩形对角线的“化归”功能.)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米.求BD与AD的长.
(引导学生分析、解答.)
探索矩形的判别条件:(由修理桌子引出)
(1).想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.
(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(2).归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
三.课堂练习:
(出示P98随堂练习题,学生思考、解答.)
四.新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结.)
五.作业设计:P99习题4.6第1、2、3题.
板书设计:
4.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
三.矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级数学教案全集篇9
教学目标:
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重点:
经历发现长方形、正方形对称轴条数的过程。
教学难点:
画平面图形的对称轴。
教学准备:
多媒体课件、书P114页的平面图形。
教学过程:
一、复习导入
出示飞机图、蝴蝶图、奖杯图。提问:这三幅图有什么共同的特征?(都是轴对称图形)
指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)
把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点划线画出对称轴,并板书:对称轴)
思考:怎样判断一个图形是不是轴对称图形?
谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)
二、教学例题
1、师:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2、指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?
对他的发言有没有不同的意见?
谁还有不同的折法吗?也来展示一下。(指名展示)
提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3、师:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
追问:对角线折出来的是轴对称图形么?为什么?他们不是一样的吗?
4、出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?
如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?
如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?
指名到黑板上量长方形的边,取中点。
学生说怎样画对称轴,教师画,画成如右形状(图略),并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
5、让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?
三、教学“练一练”
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。
让学生独立画对称轴。
交流:各画出了几条对称轴?你是怎样想的?
先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?
再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学例5
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出四个对应的顶点再连线)
五、课堂总结
提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?
六、课堂作业
1、课堂作业:《补充习题》第3页。
2、家庭作业:《伴你学》第3页。
板书设计:
轴对称图形
图形是否为轴对称图形对称轴条数
任意三角形否0
等腰三角形是1
等边三角形是3
等腰梯形是1
平行四边形否0
长方形是2
正方形是4
圆是无数条
八年级数学教案全集篇10
一、教学目标
1、使学生理解并掌握反比例函数的概念
2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1、重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2、难点:理解反比例函数的概念
3、难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入
1、回忆一下什么是正比例函数、一次函数?它们的`一般形式是怎样的?
2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1、见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1、(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2、(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
八年级数学教案全集篇11
一、内容特点
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:
无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:
首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
八年级数学教案全集篇12
【教学目标】
1.了解分式概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学重难点】
重点:理解分式有意义的条件,分式的值为零的条件.
难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学过程】
一、课堂导入
1.让学生填写[思考],学生自己依次填出:,,,.
2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.
二、例题讲解
例1:当x为何值时,分式有意义.
【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.
(补充)例2:当m为何值时,分式的值为0?
(1);(2);(3).
【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
三、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
四、小结
谈谈你的收获.
五、布置作业
课本128~129页练习.
八年级数学教案全集篇13
一、素质教育目标
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
(二)能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
(三)德育渗透点
通过一题多解激发学生的学习兴趣.
(四)美育渗透点
通过学习,体会几何证明的方法美.
二、学法引导
构造逆命题,分析探索证明,启发讲解.
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).
八年级数学教案全集篇14
教学目标:
1、在现实情境中,了解全等形的概念及全等三角形的概念及其性质
2、在具体情境中,会使用全等符号“≌”标注两个全等三角形
3、会找出两个全等三角形的对应边和对应角
教学重点:全等三角形的概念及性质
教学难点:找全等三角形对应边和对应角
教学用具:幻灯、全等三角形、剪刀、学具袋
教学过程:
(一)、教学导入
1、问题:在平面内,我们学过哪几种图形的变换?共同的性质是什么?今天我们在它的基础上学习新的内容。
(二)、新授
1、全等形及全等三角形的概念。
A、(幻灯)引出完全重合。
问题:同学们,你能举出生活中完全重合的两个图形的例子吗?
让学生讨论,交流结果,充分肯定学生的思考与发现,教师可列举一些例子。
B、教师归纳
(1)、全等形:能够完全重合的图形。
(2)、全等三角形:能够完全重合的两个三角形。
2、会使用全等符号“≌”标注两个全等三角形和找两全等三角形的对应边和对应角。
A、学生活动:每位同学用剪刀把准备好的全等三角形剪下来,意见和建议
进一步加深概念的理解。
B、教师活动:将剪好的两个全等三角形贴在黑板上,标上顶点字母。
引出:(1)、△ABC全等于△A′B′C′,全等于用“≌”表示,读作“全等于”,记作:△ABC△≌△A′B′C′。
(2)、对应顶点:互相重合的顶点。
对应边:互相重合的边。
对应角:互相重合的角。
学生试结合图,在ABC△≌△A′B′C′中找出对应顶点、对应边和对应角。
C、师生活动:将叠合的两个三角形其中一块沿任意直线作轴反射,摆出这两个全等三角形不同位置的组合图形,并指出对应元素。
D、(幻灯2)出示习题,学生在练习本上完成,做完后与同学交流,教师查巡学生练习的情况,最后师生归纳找对应角,找对应边的方法。
E、(幻灯3)归纳找对应角、找对应边的方法。
3、全等三角形的性质
A、在各种不同的变换下得到图形中,引导学生发现两个全等三角形的位置发生了变化,但他们的对应边、对应角不变,得出下面两条性质:
性质1:全等三角形对应边相等
性质2:全等三角形对应角相等
B、(幻灯4)找出全等三角形中相等的边与相等的角。
三、巩固练习
教材第71页“练习”
四、总结归纳
1、全等形及全等三角形的基本概念
2、会找全等三角形的对应边与对应角
3、全等三角形的性质
八年级数学教案全集篇15
教学难点:绝对值。
教学过程:
一、复习:
1、实数分类:方法(1),
方法(2)
注:有限小数、无限循环小数是有理数,可化为分数;无限不循环小数是无理数
例1判断:
(1)两有理数的和、差、积、商是有理数;
(2)有理数与无理数的积是无理数;
(3)有理数与无理数的和、差是无理数;
(4)小数都是有理数;
(5)零是整数,是有理数,是实数,是自然数;(6)任何数的平方是正数;(7)实数与数轴上的点一一对应;(8)两无理数的和是无理数。例2下列各数中:
-1,0,,,1.101001,,,-,,2,.有理数集合{…};正数集合{…};整数集合{…};自然数集合{…};分数集合{…};无理数集合{…};绝对值最小的数的集合{…};
2、绝对值:=(1)有条件化简例
3、①当1②a,b,c为三角形三边,化简③如图,化简+。(2)无条件化简;
例
4、化简
解:步骤①找零点;②分段;③讨论。
例
5、①已知实数abc在数轴上的位置如图,化简a+b-c-b的结果为
②当-3
例
6、阅读下面材料并完成填空
你能比较两个数20182018和20182018的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,。。。。这些简单的情况入手,从中发现规律,经过规纳,猜想出结论。
(1)通过计算,比较下列①——⑦各组中两个数的大小(在横线上填“>、=、<”号”)
①1221;②2332;③3443;④4554;⑤5665;⑥6776
⑦7887
(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是
(3)根据上面的归纳结果猜想得到的一般结论是:2018201820182018
练:(1)若a<-6,化简;(2)若a<0,化简
(3)若;(4)若=;
(5)解方程;(6)化简:。
二、小结:
;
三、作业:
四、教后感:
上一篇:教案模板四年级英语
下一篇:简单的三年级英语教案下册