好多范文网 haoduofanwen.com,好用的范文大全!

高中数学教案的模板

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

高中数学教案的模板(例文15篇)

教案使教师能够弄通教材内容,准确把握教材的重点与难点,进而选择科学、恰当的教学方法。下面小编给大家提供一些高中数学教案的模板参考,希望对大家写高中数学教案的模板有帮助。

高中数学教案的模板篇1

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个分和一个最低分后,所剩数据的平均值和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为 ,成绩大于等于15秒且小于17秒的学生人数为 ,则从频率分布直方图中可分析出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.

高中数学教案的模板篇2

1、教学目标:

一、借助单位圆理解任意角的三角函数的定义。

二、根据三角函数的定义,能够判断三角函数值的符号。

三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

2、教学重点与难点:

重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

难点:任意角的三角函数概念的建构过程。

授课过程:

一、引入

在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

二、创设情境

三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

问题:

1、锐角三角函数能否表示成第二种比值方式?

2、点P能否取在终边上的其它位置?为什么?

3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

练习:计算的各三角函数值。

三、任意角的三角函数的定义

角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

评价学生给出的定义。给出任意角三角函数的定义。

四、解析任意角三角函数的定义

三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

五、三角函数的应用。

1、已知角,求a的三角函数值。

2、已知角a终边上的一点P(-3,-4),求各三角函数值。

以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

1、已知角如何求三角函数值?

2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

4、探究:三角函数的值在各象限的符号。

六、小结及作业

教案设计说明:

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

高中数学教案的模板篇3

教学目标:1、理解集合的概念和性质.

2、了解元素与集合的表示方法.

3、熟记有关数集.

4、培养学生认识事物的能力.

教学重点:集合概念、性质

教学难点:集合概念的理解

教学过程:

1、定义:

集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.

由此上述例中集合的元素是什么?

例(1)的元素为1、3、5、7,

例(2)的元素为到两定点距离等于两定点间距离的点,

例(3)的元素为满足不等式3x-2>x+3的实数x,

例(4)的元素为所有直角三角形,

例(5)为高一·六班全体男同学.

一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??

为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(1)确定性;(2)互异性;(3)无序性.

3、元素与集合的关系:隶属关系

元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A.

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)

注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈A颠倒过来写。

4

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作N_或N+。Q、Z、R等其它数集内排除0

的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

请回答:已知a+b+c=m,A={xax2+bx+c=m},判断1与A的关系。

1.1.2集合间的基本关系

教学目标:1.理解子集、真子集概念;

2.会判断和证明两个集合包含关系;

3.理解“?”、“?”的含义;≠

4.会判断简单集合的相等关系;

5.渗透问题相对的观点。

教学重点:子集的概念、真子集的概念

教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算教学过程:

观察下面几组集合,集合A与集合B具有什么关系?

(1)A={1,2,3},B={1,2,3,4,5}.

(2)A={__>3},B={x3x-6>0}.

(3)A={正方形},B={四边形}.

(4)A=?,B={0}.

(5)A={银川九中高一(11)班的女生},B={银川九中高一(11)班的学生}。

1.子集

定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A?B(或B?A),即若任意x?A,有x?B,则A?B(或A?B)。

这时我们也说集合A是集合B的子集(subset)。

如果集合A不包含于集合B,或集合B不包含集合A,就记作A?B(或B?A),即:若存在x?A,有x?B,则A?B(或B?A)

说明:A?B与B?A是同义的,而A?B与B?A是互逆的。

规定:空集?是任何集合的子集,即对于任意一个集合A都有??A。

(2)除去?与A本身外,集合A的其它子集与集合A的关系如何?

3.真子集:

由“包含”与“相等”的关系,可有如下结论:

(1)A?A(任何集合都是其自身的子集);

(2)若A?B,而且A?B(即B中至少有一个元素不在A中),则称集合A是集合B的真子集(propersubset),记作A≠B。(空集是任何非空集合的真

子集)

(3)对于集合A,B,C,若A?B,B?C,即可得出A?C;对A?B,B?C,同样≠≠

?有A≠C,即:包含关系具有“传递性”。

4.证明集合相等的方法:

?

第3/7页

(1)证明集合A,B中的元素完全相同;(具体数据)

(2)分别证明A?B和B?A即可。(抽象情况)

对于集合A,B,若A?B而且B?A,则A=B。

1.1.3集合的基本运算

教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并

集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补

集;

(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽

象概念的作用。

教学重点:集合的交集与并集、补集的概念;

教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

【知识点】

1.并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B读作:“A并B”

即:A∪B={__∈A,或x∈B}

Venn图表示:

第4/7页

A与B的所有元素来表示。A与B的交集。

2.交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B读作:“A交B”

即:A∩B={x∈A,且x∈B}

交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

拓展:求下列各图中集合A与B的并集与交集

A

说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

3.补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,

记作:CUA

即:CUA={__∈U且x∈A}

第5/7页

补集的Venn图表示

说明:补集的概念必须要有全集的限制

4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分

交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合基本运算的一些结论:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,则A?B,反之也成立

若A∪B=B,则A?B,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

¤例题精讲:

【例1】设集合U?R,A?{x?1?x?5},B?{x3?x?9},求A?B,?U(A?B).解:在数轴上表示出集合A、B

【例2】设A?{x?Zx?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C).

【例3】已知集合A?{x?2?x?4},B?{__?m},且A?B?A,求实数m的取值范围.

_且x?N}【例4】已知全集U?{__?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系.

高中数学教案的模板篇4

教学目标

1、了解基底的含义,理解并掌握平面向量基本定理。会用基底表示平面内任一向量。

2、掌握向量夹角的定义以及两向量垂直的定义。

学情分析

前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备

重点难点

重点:对平面向量基本定理的探究

难点:对平面向量基本定理的理解及其应用

教学过程

4.1第一学时教学活动

活动1【导入】情景设置

火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。

活动2【活动】探究

已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量

c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。

因为OC=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活动3【练习】动手做一做

请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)

由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。

活动4【活动】思考

问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?

生:不行,e1,e2必须是平面内两不共线向量

活动5【讲授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。我们把不共线向量e1,e2叫做这一平面内所有向量的一组基底。一个平面向量用一组基底e1,e2表示成a=l1e1+l2e2的形式,我们称它为向量的分解。当e1,e2互相垂直时,就称为向量的正交分解。

说明:

(1)基底不惟一,关键是作为基底的两个向量不共线。

(2)由定理可将任一向量a在给出基底e1,e2的条件下进行分解,基底给定时,分解形式惟一,即l1,l2是被a,e1,e2惟一确定的数量。

活动6【讲授】平面向量基底运用

例1.如图所示,平行四边形ABCD的对角线AC和BD交于点M,AB=a,AD=b,试用基底a,b表示MC,MA,MB和MD

活动7【讲授】向量夹角的定义

阅读教材P94,回答如下问题:

1、两个向量夹角是如何形成的?,必须要满足什么条件才是它们的夹角。

2、有向量夹角范围是多少?有夹角大小来描述一下向量同向,反向,垂直?

活动8【练习】完成《聚焦课堂》活动9【讲授】课后小结

1、平面向量基本定理

2、平面向量基本定理的运用

3、向量夹角的定义。

活动10【作业】课后作业

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才报第八期专项训练1

高中数学教案的模板篇5

一、教学内容

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

二、教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

三、过程与方法

通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富.教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.

四、教学重点和难点

重点:进行含有30°、45°、60°角的三角函数值的计算

难点:记住30°、45°、60°角的三角函数值

五、教学准备

教师准备

预先准备教材、教参以及多媒体课件

学生准备

教材、同步练习册、作业本、草稿纸、作图工具等

六、教学步骤

教学流程设计

教师指导学生活动

1.新章节开场白.1.进入学习状态.

2.进行教学.2.配合学习.

3.总结和指导学生练习.3记录相关内容,完成练习.

教学过程设计

1、从学生原有的认知结构提出问题

2、师生共同研究形成概念

3、随堂练习

4、小结

5、作业

板书设计

1、叙述三角函数的意义

2、30°、45°、60°角的三角函数值

3、例题

七、课后反思

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

高中数学教案的模板篇6

一、单元教学内容分析

本章节内容教学北师大版教材安排在三角函数章节之后,教本必修四的中间位置,为后面推导和差角公式做好铺垫,为解三角形问题和平面几何中的许多计算问题提供便利工具。

向量既有代数特征,又有几何特征,是沟通代数与几何的桥梁。向量具有代数特征,运算及其规律是代数学研究的基本问题。向量可以进行多种运算,如向量加、减、数乘和叉乘等。向量运算具有一系列丰富的运算性质,与数运算相比,向量运算扩充了运算的对象和运算的性质。向量具有几何特征,它不仅可以描述、刻画几何中的点、线、面及其位置关系,数量关系,还可以表示空间当中的曲线与曲面,是研究几何问题的基本工具。本教材能从学生熟悉的实例出发,经过观察、分析、归纳等方法概括出向量的相关概念,比以往教材更能使学生产生自然而亲切的感觉,有助于激发学生的学习兴趣,调动学生学习的积极性,使他们真正认识到数学的应用价值,从而提高学生应用数学的意识。

向量是刻画现实世界的重要的数学模型。它为理解抽象代数、线性代数、泛函分析提供了基本数学模型。他与物理学科紧密相连。由于向量是近代数学中重要和基本的数学概念,是沟通代数、几何与三角函数的一种重要工具,它有极其丰富的实际背景,有着广泛的实际应用,因此它具有很高的教育教学价值,它对更新和完善知识结构具有重要的意义。

教材结合向量的几何背景——有向线段,引入向量的表示法,规定了向量的长度的概念。定义了零向量、单位向量、平行向量和共线向量等概念。对于许多旧有的知识利用向量方法去处理,就会变得非常简捷,甚至变得十分明了,从而有助于学生对这些知识有更深刻的理解,更牢固的记忆,更自如的应用,总之,有助于学生建立良好的数学认知结构。通过本部分内容的学习,可以促使学生认识到向量与实际生活紧密相连,它在解决实际问题当中有着广泛应用。

二、单元学生情况分析

1、学生在初中阶段接触过物理学里面的矢量,已具备基本的认知水平和运算能力,具备在运算中探索和发现数学结论的基本能力。

2、学生已基本掌握函数和三角函数章节的基础知识,会运用数形结合法,整体代换,分类讨论法,类比思想解决实际问题。

3、学生已具备基本的分析和解决数学问题的勇气和智慧。

三、教学目标

1.知识与技能目标

(1)理解并掌握平面向量的基本概念。通过力与力的分析实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。

(2)通过实例,掌握向量的加、减、数乘向量和两向量数量积运算,并理解其几何意义。

(3)理解并掌握向量共线和垂直问题。理解平面向量基本定理及其意义。掌握平面向量的正交分解及其坐标表示。会用坐标表示向量的加、减、数乘向量及数量积运算。

(4)通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。体会平面向量的数量积与向量投影的关系。掌握数量积的坐标表示,能运用数量积表示两个向量的夹角,会用数量积来判断向量的垂直问题。

2.过程与方法目标

(1)通过实例让学生亲身经历观察、分析、归纳、抽象概括的思维过程。感受和认知不同维度中的向量表示。

(2)通过让学生体会平面向量数量积的物理意义和几何意义,体会数学与物理是密切联系的。

(3)经历用向量方法解决某些简单的平面几何及力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,使学生的运算能力和解决实际问题的能力得到提升。

3.情感、态度与价值观

(1)从学生熟悉的生活实例出发建立平面向量概念,激发学生的学习兴趣。从物理知识引入到数学知识的形成过程,使学生体会到知识之间的相互联系,建立全面、科学的价值观。

(2)通过对向量正交分解的学习,使学生进一步体会一般的问题往往归结为人们最熟悉的特殊问题。

(3)通过对本章节内容的学习,使学生体会到数学和其他知识相联系,体会数学作为解决问题的工具的作用。

重点:

1.平面向量的概念,运算,共线问题,平面向量的基本定理。

2.平面向量的坐标表示,向量数量积的概念和性质,向量的垂直问题。

3.体会向量在解决平面几何问题和物理问题中的作用。

难点:

1.对自由向量,向量加、减法数乘向量定义的理解和对平面向量基本定理理解。

2.对平面向量运算坐标表示及向量数量积概念的理解,平面向量数量积的应用。

3.用向量表示几何关系。

四、单元教学活动

1.引入向量相关概念时,除用教材中给出的实例外,鼓励学生列举实际生活中的其他实例。

2.学习向量知识的同时,尽量地联系熟悉的物理现象或其他生活实例,用向量表述和刻画。以便让学生领悟到知识之间和学科之间的相互联系。

3.通过协作讨论,根据生活中的实际案例,边了解概念,边画图;边进行计算,边画图;进一步培养学生数形结合、形象思考、分析问题的习惯。

4.在学习本章知识的过程中,应注意向量运算的两个方面:几何意义与代数表示。由于新知识的学习过程中,它们相对孤立,学生对他们的认识也就不容易形成体系。所以在教授新课时应有意识地做一些渗透和铺垫,在章节小结时应强调它们的区别与联系,以便学生更加全面、深刻的认识向量。

高中数学教案的模板篇7

教学目标

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

教学建议

教材分析

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.

教法建议

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高中数学教案的模板篇8

高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养,谁的自学能力强,那么在一定程度上影响着你的成绩以及将来你发展的前途。同时还要注意以下几点:

第一、对数学学科特点有清楚的认识

数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是“想当然”的`话,那就学不下去了。

第二、要改变一个观念。

有人会说自己的基础不好。那什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础,

所以只要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。

第三、学数学要摸索自己的学习方法

学习重在方法,好的学习方法让学生事半功倍。学习、掌握并能灵活应用数学的途径有很多,做习题、用数学知识解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。同时,要注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

相关文章推荐:

1.高中开学第一周教学反思

2.开学第一课教学反思精选

3.20--初中开学第一课教学反思【精选】

4.高三开学教学反思

5.高一信息技术教学反思

6.开学第一课语文教学反思

7.幼儿园开学第一课反思

8.高中英语教学反思精选

9.高中生物教育反思

10.20--开学第一课教学反思

高中数学教案的模板篇9

一、教学内容分析

二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念。掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义。

二、教学目标设计

理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题。

三、教学重点及难点

二面角的平面角的概念的形成以及二面角的平面角的作法。

四、教学流程设计

五、教学过程设计

一、新课引入

1。复习和回顾平面角的有关知识。

平面中的角

定义从一个顶点出发的两条射线所组成的图形,叫做角

图形

结构射线点射线

表示法AOB,O等

2。复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征。(空间角转化为平面角)

3。观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角。在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关。)从而,引出二面角的定义及相关内容。

二、学习新课

(一)二面角的定义

平面中的角二面角

定义从一个顶点出发的两条射线所组成的图形,叫做角课本P17

图形

结构射线点射线半平面直线半平面

表示法AOB,O等二面角a或—AB—

(二)二面角的图示

1。画出直立式、平卧式二面角各一个,并分别给予表示。

2。在正方体中认识二面角。

(三)二面角的平面角

平面几何中的角可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,二面角也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

1。二面角的平面角的定义(课本P17)。

2。AOB的大小与点O在棱上的位置无关。

[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题。

②与两条异面直线所成的角、直线和平面所成的角做类比,用平面角去度量。

③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直。

3。二面角的平面角的范围:

(四)例题分析

例1一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个的二面角,求此时B、C两点间的距离。

[说明]①检查学生对二面角的平面角的定义的掌握情况。

②翻折前后应注意哪些量的位置和数量发生了变化,哪些没变?

例2如图,已知边长为a的等边三角形所在平面外有一点P,使PA=PB=PC=a,求二面角的大小。

[说明]①求二面角的步骤:作证算答。

②引导学生掌握解题可操作性的通法(定义法和线面垂直法)。

例3已知正方体,求二面角的大小。(课本P18例1)

[说明]使学生进一步熟悉作二面角的平面角的方法。

(五)问题拓展

例4如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是,沿这条路上山,行走100米后升高多少米?

[说明]使学生明白数学既来源于实际又服务于实际。

三、巩固练习

1。在棱长为1的正方体中,求二面角的大小。

2。若二面角的大小为,P在平面上,点P到的距离为h,求点P到棱l的距离。

四、课堂小结

1。二面角的定义

2。二面角的平面角的定义及其范围

3。二面角的平面角的常用作图方法

4。求二面角的大小(作证算答)

五、作业布置

1。课本P18练习14。4(1)

2。在二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离。

3。把边长为a的正方形ABCD以BD为轴折叠,使二面角A—BD—C成的二面角,求A、C两点的距离。

六、教学设计说明

本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程。二面角及二面角的平面角这两大概念的引出均运用了类比的手段和方法。教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学。

高中数学教案的模板篇10

一、教材分析

1.地位及作用

"余弦定理"是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2.教学重、难点

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

二、教学目标

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

三、教学方法

数学课堂上首先要重视知识的发生过程,既能展现知识的`获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题"的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

四、教学过程

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在其中已知AC=b,AB=c和A,求a.

学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。其中已知a=5,b=7,c=8,求B.

学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。

让学生观察推论的特征,讨论该推论有什么用。

高中数学教案的模板篇11

教学内容:习惯的养成(养成教育)

教学目标:

1.用轻松亲切的语调,让孩子们对小学生活有一个感性的认识。

2.培养卫生习惯、生活习惯、学习习惯、爱护公物的习惯。

3.通过学习,让孩子们对小学生活满怀美好的憧憬。

教学过程:

师:小朋友们好!首先祝贺小朋友们光荣地成为了一名小学生!老师看到每一个孩子的笑脸,真高兴啊,你们就像花儿一样,老师非常喜欢你们!

(在黑板上写一个大大的“聪”字)

师:认识这个字吗?

生:聪!

师:对,聪明的聪。你们想不想成为一个聪明的孩子?

生:想!

师:怎么样才能成为聪明的孩子呢?我们来看,“聪”字是由耳朵、眼睛、嘴巴,还有一个“心”字组成的。小朋友们,我们只要会用耳朵听,会用眼睛看,会用嘴巴说,再会用心去做,你就一定会是一个聪明的好孩子。你能做到吗?下面我们开始试一试啦!

首先是会用耳朵听。听老师说话要专心,不能东张西望,听同学发言,要注意听他回答对了没有,如果你还有想法,就举手说出你的想法。谁听懂了?(试问学生)

第二要会用眼睛看。你看到我们的教室干净吗?那是昨天我和曾老师花了很长时间打扫的。那绿色的很新的墙群是我和曾老师亲自粉刷的。所以,请同学们不要用手去摸,更不要用脚去踢,就像爱护我们的眼睛一样地去爱护它,谁能做得到?

第三要会用嘴巴说话。上课时,老师提问后,请你把小手举起来,回答问题要响亮,让全班小朋友都听得到,每个小朋友都要会用你的小嘴巴表达哦!

我们会用耳朵听,会用眼睛看,会用嘴巴说,是不是就很聪明了呢?不,最重要的是要会用心去听,会用心去看,会用心去说,一句话,就是做什么事都要用心去做,才是真正聪明的孩子。

聪明的孩子要做到以下几点:

一、爱护公物。学校的一草一木,一桌一椅,学校里所有的东西都要爱护。不踩花,不摘花,不踩草坪,不摘树叶,不在桌子上乱刻乱画,不在教室里追逐打闹。我们学校的操场正在施工,请小朋友们不要到操场上玩耍。

二、讲究卫生。上厕所时,不能在厕所外面随处大小便,要进到厕所里指定的位置,你能做到了吗?(课后,带队去看男女厕所的位置)在家里,每天早晚要刷牙,勤洗澡,勤换衣服,勤剪指甲。不随地吐痰,预防传染病。

三、爱惜粮食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老师想看看谁是最爱惜粮食的好孩子。(放晚学前总结)

四、排路队时要做到快、静、齐。教给大家我编的儿歌:“排路队,手牵手,不说话,排整齐。”走出校门后,如果找不到家长,不要自己回,要找到老师,或者回到校门口等家长来接。

五、我们是小学生了,不能带玩具来学校玩,也不要带钱来买零食吃。现在天气炎热,我们每天要从家里自己带来一瓶水,多喝水,既清嗓来又防病,听明白了吗?我相信我们一(7)班的小朋友一定会成为一个聪明的讲文明的小学生。

后记:今天加班打印各种材料,包括开学初的养成教案。不知不觉已到教师节。祝各位同行教师节快乐!天天开心!

高中数学教案的模板篇12

以下是一个高中数学网课的教学叙事教案的示例:

叙事者:一位在线高中数学教师

目标:本课程的目标是帮助学生理解高中数学的基本概念和技能,并能够在在线课堂中积极参与互动。

内容:

1.理解函数的基本概念和性质(课时1)

在本次课程中,我们将重点理解函数的基本概念和性质。我们将介绍函数的定义、变量、自变量和因变量之间的关系,以及函数的单调性、奇偶性和有界性。此外,学生将通过在线练习来巩固这些概念。

2.掌握指数函数和对数函数(课时2)

在本次课程中,我们将重点掌握指数函数和对数函数的基本性质和图像。我们将介绍指数函数、对数函数的概念和性质,以及如何利用它们进行计算。学生将通过在线练习来巩固这些概念。

3.理解三角函数的性质和图像(课时3)

在本次课程中,我们将重点理解三角函数的基本性质和图像。我们将介绍三角函数的定义、符号、单位圆以及三角函数的性质和图像。学生将通过在线练习来巩固这些概念。

4.掌握数列的基本概念和性质(课时4)

在本次课程中,我们将重点掌握数列的基本概念和性质。我们将介绍数列的定义、通项公式、前n项和以及数列的递推关系。学生将通过在线练习来巩固这些概念。

5.掌握几何的基本概念和性质(课时5)

在本次课程中,我们将重点掌握几何的基本概念和性质。我们将介绍几何的定义、点、直线、平面以及几何的公理和定理。学生将通过在线练习来巩固这些概念。

评估:

本课程的评估方式包括在线测试、作业和在线讨论。在线测试旨在检验学生对基本概念和技能的掌握情况,作业旨在帮助学生巩固所学知识,在线讨论旨在促进师生之间的互动和交流。

教育叙事高中数学为本网站原创作品,不得擅自转载!

高中数学教案的模板篇13

一、教学目标

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

二、教学重点难点

重点:画出简单几何体、简单组合体的三视图;

难点:识别三视图所表示的空间几何体。

三、学法指导:

观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的`投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本P15练习1、2;P20习题1.2[A组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本P20习题1.2[A组]1。

高中数学教案的模板篇14

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设 、 两点的坐标是 、(3,7),求线段 的垂直平分线 的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段 的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设 是线段 的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点 的坐标 是方程 的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点 的坐标 是方程①的任意一解,则

到 、 的距离分别为

所以 ,即点 在直线 上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点 与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;

(2)写出适合条件 的点 的集合

;

(3)用坐标表示条件 ,列出方程 ;

(4)化方程 为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合

由距离公式,点 适合的条件可表示为

将①式 移项后再两边平方,得

化简得

由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 .

根据条件 ,代入坐标可得

化简得

由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案的模板篇15

教学目标:

1、在新学期能够以积极的学习态度投入到学习中去,并用高昂的兴趣参与学习。

2、熟悉新学期音乐课的要求,并能够有意识的遵守,以良好的学习习惯规范自己在课堂中的表现。

教学重点:

养成良好的学习习惯

教学过程:

一.师生互相问好,拉近彼此的距离。

二.师生共同演绎节目,学生表演,老师表演,增进彼此感情,与孩子打成一片。

三.讲述新学期音乐课要求:

1、按时按顺序进入教室,不迟到,不早退。

2、进入教室不得高声喧哗打闹,保持安静状态。

3、认真保持教室卫生,不乱扔果皮纸屑,不随地吐痰。

4、课堂上发言积极有序,有礼有节,争做文明小学生。

5、做到爱护公共物品,轻拿轻放,损坏照价赔偿。

6、上课保持良好的状态,以积极的态度认真学习。

四、习惯养成训练,听音乐做出相关要求:

1、起立、坐下

2、安静

3、师生问好

4、请坐好

5、同桌面对

五、分组选拨,并对小组长提出要求

1、四人一小组

2、讲述课堂要求,小组合作学习,评价真实客观,学会欣赏别人;正当优秀小组,小组团结合作,富有创新;组长根据组员的表现,从纪律、学习习惯、上课表现上进行评价计分,获得3分就可获得一张绿卡。

小结:

希望第一节课能让师生互相留下印象,更好的进行今后的音乐教学,把音乐课上的更加的有声有色。

163066
领取福利

微信扫码领取福利

微信扫码分享